
Syllabus - Module IV

Design with classes - Objects and Classes, Methods, Instance Variables,
Constructor, Accessors and Mutators. Structuring classes with
Inheritance and Polymorphism. Abstract Classes. Exceptions - Handle a
single exception, handle multiple exceptions.

1

Overview of OOP (Object OrientedProgramming)
• Python is a multi-paradigm programming language. It supports different programming

approaches.

• One of the popular approaches to solve a programming problem is by creating objects.
This is known as Object-Oriented Programming (OOP).

An object has two characteristics:
(1) attributes

(2) behavior

Suppose a parrot is an object, as it has the following properties:

name, age, color as attributes

singing, dancing as behavior

2

Object-oriented vs. Procedure-oriented Programming
Languages

Object-oriented Programming Procedural Programming

Object-oriented programming is the problem-solving
approach and used where computation is done by
using objects.

Procedural programming uses a list of instructions to
do computation step by step.

It makes the development and maintenance easier In procedural programming, It is not easy to
maintain the codes when the project becomes
lengthy.

It simulates the real world entity. So real-world
problems can be easily solved through oops.

It doesn't simulate the real world. It works on step
by step instructions divided into small parts called
functions.

It provides data hiding. So it is more secure than
procedural languages. You cannot access private
data from anywhere.

Procedural language doesn't provide any proper way
for data binding, so it is less secure.

Example of object-oriented programming languages
is C++, Java, .Net, Python, C#, etc.

Dept. of C

Example of procedural languages are: C, Fortran,
Pascal, VB etc.

SE, 4

Objects and Classes

• Object is an instance of a class.
• A class is a collection of data(variables) and methods(functions).

• A class is the basic structure of an object and is a set of attributes, which can be data
members or method members.

Some important terms in OOP are as follows:

✓Class - They are defined by the user. The class provide basic structure for an object.

✓Data Member - A variable defined in either a class or an object. It holds the data
associated with the class or object.

✓Instance variable - A variable that is defined in a method; its scope is only within the
object that defines it.

✓Class Variable - A variable that is defined in the class and can be used by all the
instances of the class.

4

✓Instance - An object is an instance of the class.

✓Instantiation - The process of creation of an object of a class.

✓Method - Methods are the functions that are defined in the definition of class and are
used by various instances of the class.

✓Function Overloading - A function defined more than one time with different behaviours
is known as function overloading. The operations performed by these functions are
different.

✓Inheritance - a class A that can use the characteristics of another class B is said to be a
derived class. ie., a class inherited from B. The process is called inheritance.

Data Encapsulation:

• In OOP, restrictions can be imposed on the access to methods and variables. Such
restrictions can be used to avoid accidental modification in the data and are known as
Encapsulation.

5

• Polymorphism

The term polymorphism means that the object of a class can have many different forms
to respond in different ways to any message or action.

6

ClassDefinition

• A class is a “blueprint” for creating objects.

• It can also be defined as a group of objects that share similar attributes and
relationships with each other.

eg., Fruit is a class and apple, mango and banana are its objects.

The attributes of these objects can be color, taste etc.

Syntax for defining a class

In python class is created by using a keyword class

After that, the first statement can be a docstring that contains the information about
the class.

In the body of class, the attributes (data members or method members) are defined.

7

class <class name>(<parent class name>):

<method definition-1>

…

<method definition-n>

• In python, as soon as we define a class, the iterpreter instantly creates an object that
has the same name as the class name.

• We can create more objects of the same class. With the help of objects, we can access
the attributes defined in the class.

syntax for creating objects for a class

<object name> = <classname>

8

Creating class Student
class Student:

'''Student details'''

def fill_details(self,name,branch,year):

self.name = name

self.branch = branch

self.year = year

print("A student detail object is created...")

def print_details(self):

print("Name: ",self.name)

print("Branch: ",self.branch)

print("Year: ",self.year)

9

Creating an object of Student class

>>> s1 = Student()

>>> s2 = Student()

>>> s1.fill_details('Rahul','CSE','2020')

A student detail object is created...

>>> s1.print_details()

Name: Rahul

Branch: CSE

Year: 2020

>>> s2.fill_details('Akhil','ECE','2010')

A student detail object is created...

>>> s2.print_details()

Name: Akhil

Branch: ECE
10

Year: 2010

Constructors in Python

A constructor is a special type of method (function) which is used to initialize the
instance members of the class.

Constructors can be of two types.

1. Parameterized Constructor

2. Non-parameterized Constructor

Creating the constructor in python

Class functions that begin with double underscore “ “ are called special functions as
they have special meaning.

In Python, the method the init () simulates the constructor of the class. This
method is called when the class is instantiated. It accepts the self-keyword as a first
argument which allows accessing the attributes or method of the class.

11

Example : Display a Complex Number

class ComplexNumber:

def init (self, r=0, i=0):

self.real = r

self.imag = i

def getNumber(self):

print(f'{self.real} + j{self.imag}')

num1 = ComplexNumber(2, 3)

num1.getNumber()

Output : 2+j3
12

Example : Display Employee Details
class Employee:

def init (self, id, name):
self.id = id
self.name = name

def display(self):
print("Id: %d\n Name: %s" % (self.id, self.name))

emp1 = Employee(1, "john")

emp2 = Employee(2, "Anu")

emp1.display()

Output:

Id: 1
Name: john
Id: 2
Name: Anu

emp2.display()

13

Python Non-Parameterized Constructor

The non-parameterized constructor uses when
we do not want to manipulate the value or the
constructor that has only self as an argument.

class Student:
def init (self):

print("This is non parameterized
constructor")

def show(self, name):
print("Hello ", name)

s1 = Student()
s1.show("Roshan")

output:
This is non parameterized constructor

Python Parameterized Constructor

The parameterized constructor has multiple
parameters along with the self.

class Student:
def init (self, name):

print("This is parameterized constructor")
self.name = name

def show(self):
print("Hello ", self.name)

s1 = Student("Rahul")
s1.show()

output:
This is parameterized constructor

Hello Roshan Hello Rahul
14

Python Default Constructor

When we do not include the constructor in the class or forget to declare it, then that
becomes the default constructor. It does not perform any task but initializes the objects.

class Student:
name = "Jeevan"
rollno = 101

def show(self):
print("Name: ", self.name)
print("Roll No: ", self.rollno)

s1 = Student()
s1.show()

Output:
Name: Jeevan
Roll No: 101 16

A course-management application needs to represent information about students in a
course. Each student has a name and a list of test scores. We can use these as the
attributes of a class named Student. The Student class should allow the user to view a
student’s name, view a test score at a given position (counting from 1), reset a test
score at a given position, view the highest test score, view the average test score, and
obtain a string representation of the student’s information.

The str Method :

Many built-in Python classes usually include an str method. This method builds
and returns a string representation of an object’s state. When the str function is called
with an object, that object’s str method is automatically invoked to obtain the
string that str returns.

Example : The Student class

16

"""

File: student.py

Resources to manage a student's name and test scores.

"""

class Student(object):

"""Represents a student."""

def init (self, name, number):

"""Constructor creates a Student with the given

name and number of scores and sets all scores

to 0."""

self.name = name

self.scores = []

for count in range(number):

self.scores.append(0)

17

def getName(self):

"""Returns the student's name."""

return self.name

def setScore(self, i, score):

"""Resets the ith score, counting from 1."""

self.scores[i - 1] = score

def getScore(self, i):

"""Returns the ith score, counting from 1."""

return self.scores[i - 1]

def getAverage(self):

"""Returns the average score."""

return sum(self.scores) / len(self.scores)

18

def getHighScore(self):

"""Returns the highest score."""

return max(self.scores)

def str (self):

"""Returns the string representation of the

student."""

return "Name: " + self.name + "\nScores: " + \

" ".join(map(str, self.scores))

19

• The Methods that allow a user to observe but not change the state of an object are
called accessors.

• Methods that allow a user to modify an object’s state are called mutators.

Accessor Method: This method is used to access the state of the object i.e, the data
hidden in the object can be accessed from this method. However, this method cannot
change the state of the object, it can only access the data hidden. We can name these
methods with the word get.

Mutator Method: This method is used to mutate/modify the state of an object i.e, it
alters the hidden value of the data variable. It can set the value of a variable instantly
to a new value. This method is also called as update method. Moreover, we can name
these methods with the word set.

Accessors andMutators

20

class Fruit:

def init (self, name):

self.name = name

def setFruitName(self, name):

self.name = name

def getFruitName(self):

return self.name

f1 = Fruit("Apple")

print("First fruit name: ", f1.getFruitName())

f1.setFruitName("Grape")

print("Second fruit name: ", f1.getFruitName())

Example : Accessors andMutators

Output:
First fruit name: Apple
Second fruit name: Grape

21

• Inheritance is an important aspect of the object-oriented paradigm. Inheritance
provides code reusability to the program because we can use an existing class to
create a new class instead of creating it from scratch.

• In inheritance, the child class acquires the properties and can access all the data
members and functions defined in the parent class. A child class can also provide its
specific implementation to the functions of the parent class.

Syntax:

class derived class name(base class):

<class-suite>

Inheritance inPython

22

Types of Inheritance

23

• When a child class inherits from only one parent class, it is called single inheritance.

• class derive-class(<base class >):

<class - suite>

Single Inheritance

Person

Employee

class Person:
def init (self, name):

self.name = name

def getName(self):
return self.name

def isEmployee(self):
return False

class Employee(Person):
def isEmployee(self):

return True

p = Person("Anu")
print(p.getName(),
p.isEmployee())

e = Employee("Ammu")
print(e.getName(),
e.isEmployee())

Output:
Anu False
Ammu True

24

• When a child class inherits from multiple parent classes, it is called multiple
inheritance.

• class derive-class(<base class 1>, <base class 2>, <base class n>):

<class - suite>

Multiple inheritance

Person

Resident

Student

25

class Person:

def init (self, name, age):

self.name = name

self.age = age

def showName(self):

print(self.name)

def showAge(self):

print(self.age)

class Student:
def init (self, rollno):

self.rollno = rollno

def getRollno(self):
print(self.rollno)

class Resident(Person, Student):
def init (self, name, age, rollno):

Person. init (self, name, age)
Student. init (self, rollno)

26

r = Resident("Roshan", 21, 101)

r.showName()

r.showAge()

r.getRollno()

Output:

Roshan

21

101

27

Resolving the Conflict with Python Multiple Inheritance:
class A:

def init (self):
self.name = "John"
self.age = 23

def getName(self):
return self.name

class B:
def init (self):

self.name = "Richard"
self.id = 32

def getName(self):
return self.name

class C(A, B):
def init (self):

A. init (self)
B. init (self)

def getName(self):
return self.name

C1 = C()
print(C1.getName())

Output:
Richard

29

Method Resolution Order(MRO)

MRO works in a depth first left to right way. super() in the init method indicates
the class that is in the next hierarchy. At first the the super() of C indicates A.

Then super in the constructor of A searches for its superclass. If it doesn’t find any, it
executes the rest of the code and returns. So the order in which constructors are called
here is:

C -> A -> B

29

Resolving the Conflict with Python Multiple Inheritance:

class A:
def init (self):

super(). init ()
self.name = 'John'
self.age = 23

def getName(self):
return self.name

class B:
def init (self):

super(). init ()
self.name = 'Richard'
self.id = '32'

def getName(self):
return self.name

class C(A, B):
def init (self):

super(). init ()

def getName(self):
return self.name

C1 = C()
print(C1.getName())
print(C. mro)

Output : John
30

• This is achieved when a derived class inherits another derived class. There is no limit
on the number of levels up to which, the multi-level inheritance is achieved in python.

•Syntax

class class1:

<class-suite>

class class2(class1):

<class suite>

class class3(class2):

<class suite>

Multilevel Inheritance

Second

Third

First

31

class First:
def first(self):

print("I am the first class")

class Second(First):
def second(self):

print("I am the second class")

class Third(Second):
def third(self):

print("I am the third class")

t = Third()
t.first()
t.second()
t.third()

Output:
I am the first class
I am the second class
I am the third class

32

• When more than one derived classes are created from a single base – it is called
hierarchical inheritance.

• Syntax

class class1:

<class-suite>

class class2(class1):

<class suite>

class class3(class1):

<class suite>

HierarchicalInheritance

Child-1 Child-2

Parent

33

class Parent:
def func1(self):

print("This function is in
Parent")

class Child1(Parent):
def func2(self):

print("This function is in
child1")

class Child2(Parent):
def func3(self):

print("This function is in
child3")

c1 = Child1()
c2 = Child2()

c1.func1()
c1.func2()

c2.func1()
c2.func3()

Output:

This function is in child1
This function is in Parent
This function is in child3

34

• The hybrid inheritance is the combination of more than one type of inheritance. We
may use any combination as a single with multiple inheritances, multi-level with
multiple inheritances, etc.

Hybrid Inheritance

B C

A

D
36

• Python also has a super() function that will make the child class inherit all the
methods and properties from its parent:

• By using the super() function, you do not have to use the name of the parent element,
it will automatically inherit the methods and properties from its parent.

class Person:
def init (self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
def init (self, fname, lname):
super(). init (fname, lname)

Use the super()Function

x = Student("John", "Samuel")
x.printname()

Output:
John Samuel

37

• The word polymorphism means having many forms. In programming, polymorphism
means same function name (but different signatures) being uses for different types.

• It is a very important concept in programming. It refers to the use of a single type
entity (method, operator or object) to represent different types in different scenarios.

• Polymorphism in addition operator

num1 = 1
num2 = 2
print(num1+num2)
o/p : 3

Polymorphism inPython

str1 = "Python"
str2 = "Programming"
print(str1+" "+str2)
o/p : Python Programming

37

• Function polymorphism in python

print(len("Programiz"))
print(len(["Python", "Java", "C"]))
print(len({"Name": "John", "Address": "Nepal"}))

38

• Polymorphism in Class Methods

class Rectangle:
def init (self, length, width):

self.length = length
self.width = width

def findArea(self):
print("Area: ", self.length * self.width)

def printInfo(self):
print("This is a Rectangle")

class Shape:
def init (self, length, width):

self.length = length
self.width = width

def findArea(self):
print("Area: ", self.length * self.width)

def printInfo(self):
print("This is a geometric shape")

39

rect1 = Rectangle(12, 10)
sh1 = Shape(10, 13)

for value in (rect1, sh1):
value.printInfo()
value.findArea()

Output:

This is a Rectangle
Area: 120
This is a geometric shape
Area: 130

40

• Polymorphism and Inheritance

Like in other programming languages, the child classes in Python also inherit methods
and attributes from the parent class. We can redefine certain methods and attributes
specifically to fit the child class, which is known as Method Overriding.

In Python, to override a method, you have to meet certain conditions, and they are:

• You can’t override a method within the same class. It means you have to do it in
the child class using the Inheritance concept.

• To override the Parent Class method, you have to create a method in the Child
class with the same name and the same number of parameters.

41

class Parent:
def init (self):

self.value = "Inside Parent"

def show(self):
print(self.value)

class Child(Parent):
def init (self):

self.value = "Inside Child"

def show(self):
print(self.value)

obj1 = Parent()
obj2 = Child()

obj1.show()
obj2.show()

Output:

Inside Parent
Inside Child

42

Abstraction means hiding the complexity and only showing the essential features of the
object. So in a way, Abstraction means hiding the real implementation and we, as a user,
knowing only how to use it.

Abstract Class in Python
• An abstract class is a class that contains one or more abstract methods.
• An Abstract method is a method that generally doesn’t have any implementation,

it is left to the sub classes to provide implementation for the abstract methods.
• Abstract class can’t be instantiated so it is not possible to create objects of

an abstract class.

Abstraction

43

In Python abstract class is created by deriving from the meta class ABC which belongs to
the abc (Abstract Base Class) module.

Syntax for creating Abstract Class
from abc import ABC
class MyClass(ABC):

Abstract Method in Python

• For defining abstract methods in an abstract class, method has to be decorated with
@abstractmethod decorator.

• From abc module @abstractmethod decorator has to be imported to use that
annotation.

Abstract Class inPython

44

Syntax for defining abstract method in abstract class in Python

from abc import ABC, abstractmethod
class MyClass(ABC):
@abstractmethod

def mymethod(self):
pass #empty body

45

Important points about abstract class in Python

• Abstract class can have both concrete methods as well as abstract methods.

• Abstract class works as a template for other classes.

• Abstract class can’t be instantiated so it is not possible to create objects of
an abstract class.

• Generally abstract methods defined in abstract class don’t have any body but it
is possible to have abstract methods with implementation in abstract class.

• If any abstract method is not implemented by the derived class Python throws
an error.

46

from abc import ABC, abstractmethod

class Parent(ABC):
def common(self):

print("I am the common of parent")

@abstractmethod
def vary(self):

pass

class Child1(Parent):
def vary(self):

print("I am vary of child1")

class Child2(Parent):
def vary(self):

print("I am vary method of child2")

obj1 = Child1()
obj1.common()
obj1.vary()
obj2 = Child2()
obj2.common()
obj2.vary()

o/p
I am the common of parent
I am vary of child1
I am the common of parent
I am vary method of child2

47

Encapsulation

• Encapsulation in Python describes the concept of bundling data and methods within
a single unit

• Using encapsulation, we can hide an object’s internal representation from the
outside. This is called information hiding.

• Also, encapsulation allows us to restrict accessing variables and methods directly and
prevent accidental data modification by creating private data members and methods
within a class.

• Encapsulation is a way to can restrict access to methods and variables from outside of
class. Whenever we are working with the class and dealing with sensitive data,
providing access to all variables used within the class is not a good choice.

• Two common kinds of errors that you may have to deal with are

✓Syntax errors

✓Exceptions

Syntax Errors:

It occur when you type the code incorrectly.

Exceptions:

They are different from syntax errors. They occur during the execution of a program
when something unexpected happens.

Errors andExceptions

50

SYNTAX ERRORS

• NameError: This exception is raised when the program cannot find a local or

global name. The name that could not be found is included in the error message.

• TypeError: This exception is raised when a function is passed an object of the

inappropriate type as its argument. More details about the wrong type are

provided in the error message.

• ValueError: This exception occurs when a function argument has the right type

but an inappropriate value.

RUNTIME ERRORS(EXCEPTIONS)

Some Common Built-inExceptions

54

• NotImplementedError: This exception is raised when an object is supposed to support

an operation but it has not been implemented yet. You should not use this error when

the given function is not meant to support the type of input argument. In those

situations, raising a TypeError exception is more appropriate.

• ZeroDivisionError: This exception is raised when you provide the second argument for

a division or modulo operation as zero.

• FileNotFoundError: This exception is raised when the file or directory that the program

requested does not exist

55

a = True

while a:

x = int(input("Enter a number: "))

print("Dividing 50 by", x, "will give you:", 50/x)

You will get Value Error on entering decimal number or string as input.

To handle the exception,

The first step of the process is to include the code that you think might raise an
exception inside the try clause. The next step is to use the except keyword to
handle the exception that occurred in the above code

Handling anException

67

a = True

while a:

try:

x = int(input("Please enter a number: "))

print("Dividing 50 by", x, "will give you: ", 50/x)

except ValueError:

print("The input was not an integer. Please try again...")

Output:

Please enter a number: a

The input was not an integer. Please try again...

Please enter a number: 2

Dividing 50 by 2 will give you: 25.0

68

• If no exception was raised, the program skips the except clause and the rest of the
code executes normally.

• If an exception is raised, the program skips the remaining code inside the try clause
and the type of the exception is matched with the name of the exception after the
except keyword.

In case of a match, the code inside the except clause is executed

first, and then the rest of the code after the try clause is executed normally.

• When you enter an integer as an input, the program gives you the final result of the
division.

• When a non-integral value is provided, the program prints a message asking you to try
and enter an integer again.

• Note that this time, the program does not abruptly quit when you provide some
invalid input

69

• You can also handle multiple exceptions using a single except clause by passing these
exceptions to the clause as a tuple.

except (ZeroDivisionError, ValueError, TypeError):

print("Something has gone wrong..")

• One possible use of catching all exceptions is to properly print out the exception error on
screen like the following code:

import math

import sys

try:

result = math.factorial(2.4)

except:

print("Something Unexpected has happened.",sys.exc_info()[0])

else:

print("The factorial is", result)

70

• The else clause is meant to contain code that needs to be executed if the try clause did
not raise any exceptions.

• if you decide to use an else clause, you should include it after all the except clauses but
before the finally block.

a = True

while a:

try:

x = int(input("Please enter a number: "))

except ValueError:

print("The input was not a valid integer. Please try again...")

else:

print("Dividing 50 by", x, "will give you :", 50 / x)

Using the ElseClause

71

• The code inside the finally clause is always executed irrespective of whether the try block
raised an exception.

a = True

while a:

try:

x = int(input("Please enter a number: "))

except ValueError:

print("The input was not a valid integer. Please try again...")

else:

print("Dividing 50 by", x,"will give you :", 50/x)

finally:

print("Already did everything necessary.")

Using the FinallyClause

72

Output:

Please enter a number: 2

Dividing 50 by 2 will give you : 25.0

Already did everything necessary.

Please enter a number: d

The input was not a valid integer. Please try again...

Already did everything necessary.

Please enter a number:

73

Using arguments for Exceptions in Python is useful for the following reasons:

✓It can be used to gain additional information about the error encountered.

✓As contents of an Argument can vary depending upon different types of Exceptions
in Python, Variables can be supplied to the Exceptions to capture the essence of the
encountered errors. Same error can occur of different causes, Arguments helps us
identify the specific cause for an error using the except clause.

✓It can also be used to trap multiple exceptions, by using a variable to follow the tuple
of Exceptions.

Exception withArguments

74

try:

b = float(100+50/0)

except Exception as argument:

print("This is the argument\n", argument)

Output:

This is the argument

division by zero

Arguments in Built-inExceptions

s = "Hello Python"
try:

b = float(s/20)
except Exception as argument:

print("This is the argument: \n",
argument)

Output:

This is the argument:
unsupported operand type(s) for /:

'str' and 'int'

75

An exception can be raised forcefully by using the raise clause in Python. It is useful in
that scenario where we need to raise an exception to stop the execution of the program.

Syntax: raise Exception_class,<value>

• To raise an exception, the raise statement is used. The exception class name follows it.

• An exception can be provided with a value that can be given in the parenthesis.

• To access the value "as" keyword is used. "e" is used as a reference variable

which stores the value of the exception.

• We can pass the value to an exception to specify the exception type.

Raising exceptions

76

try:

age = int(input("Enter the age:"))

if(age<18):

raise ValueError

else:

print("the age is valid")

except ValueError:

print("The age is not valid")

Output:

Enter the age:16

The age is not valid

77

In Python, users can define custom exceptions by creating a new class. This exception
class has to be derived, either directly or indirectly, from the built-in Exception class.
Most of the built-in exceptions are also derived from this class.

class customError(Exception):

pass

raise customError

Here, we have created a user-defined exception called CustomError which inherits
from the Exception class. This new exception, like other exceptions, can be raised using
the raise statement with an optional error message.

User-DefinedExceptions

78

✓Super class exceptions are created when a module needs to handle several distinct
errors.

✓One of the common way of doing this is to create a base class for exceptions defined
by that module.

✓Further, various sub classes are defined to create specific exception classes for
different error conditions.

Deriving Error from Superclass

79

class Error(Exception):
pass

class ValueTooSmallError(Error):
pass

class ValueTooLargeError(Error):

pass
number = 10
while True:

try:
i_num = int(input("Enter a number: "))

if i_num < number:

raise ValueTooSmallError
elif i_num > number:

raise ValueTooLargeError

break

except ValueTooSmallError:
print("This value is too small, try

again!")

except ValueTooLargeError:
print("This value is too large, try

again!")

print("Congratulations! You guessed it
correctly.")

80

Output:

Enter a number: 3

This value is too small, try again!

Enter a number: 5

This value is too small, try again!

Enter a number: 11

This value is too large, try again!

Enter a number: 10

Congratulations! You guessed it correctly.

81

Thank You

82

